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Abstract 

Background Gastric cancer is one of the global health concerns. A series of studies on the stomach have con‑
firmed the role of the microbiome in shaping gastrointestinal diseases. Delineation of microbiome signatures 
to distinguish chronic gastritis from gastric cancer will provide a non‑invasive preventative and treatment strategy. 
In this study, we performed whole metagenome shotgun sequencing of fecal samples to enhance the detection 
of rare bacterial species and increase genome sequence coverage. Additionally, we employed multiple bioinfor‑
matics approaches to investigate the potential targets of the microbiome as an indicator of differentiating gastric 
cancer from chronic gastritis.

Results A total of 65 patients were enrolled, comprising 33 individuals with chronic gastritis and 32 with gastric 
cancer. Within each group, the chronic gastritis group was sub‑grouped into intestinal metaplasia (n = 15) and non‑
intestinal metaplasia (n = 18); the gastric cancer group, early stage (stages 1 and 2, n = 13) and late stage (stages 
3 and 4, n = 19) cancer. No significant differences in alpha and beta diversities were detected among the patient 
groups. However, in a two‑group univariate comparison, higher Fusobacteria abundance was identified in phylum; 
Fusobacteria presented higher abundance in gastric cancer (LDA scored 4.27, q = 0.041 in LEfSe). Age and sex‑
adjusted MaAsLin and Random Forest variable of importance (VIMP) analysis in species provided meaningful fea‑
tures; Bacteria_caccae was the most contributing species toward gastric cancer and late‑stage cancer (beta:2.43, 
se:0.891, p:0.008, VIMP score:2.543). In contrast, Bifidobacterium_longum significantly contributed to chronic gastritis 
(beta:‑1.8, se:0.699, p:0.009, VIMP score:1.988). Age, sex, and BMI‑adjusted MasAsLin on metabolic pathway analysis 
showed that GLCMANNANAUT‑PWY degradation was higher in gastric cancer and one of the contributing species 
was Fusobacterium_varium.
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Conclusion Microbiomes belonging to the pathogenic phylum Fusobacteria and species Bacteroides_cac-
cae and Streptococcus_anginosus can be significant targets for monitoring the progression of gastric cancer. 
Whereas Bifidobacterium_longum and Lachnospiraceae_bacterium_5_1_63FAA might be protection biomarkers 
against gastric cancer.

Keywords Fusobacteria, Bacteroides_caccae, Bifidobacterium_longum, Streptococcus_anginosus, Lachnospiraceae_
bacterium_5_1_63FAA, GLCMANNANAUT‑PWY

Background
Gastric cancer is one of the major health problems 
worldwide, ranking fifth in incidence and third in can-
cer-related mortality, as reported in the latest published 
global cancer statistics [1]. Long-term studies have con-
firmed that the development of gastritis with precancer 
lesions such as atrophic gastritis or intestinal metapla-
sia increases the risk of gastric cancer [2–4].

Gastritis diagnosis in clinical practice relies primar-
ily on invasive endoscopy and histological examination 
[5], which cannot be performed frequently and easily. 
Hence, monitoring disease progression with non-inva-
sive methods and detection of biomarkers are in high 
demand for prevention and treatment strategies for 
gastric diseases.

A series of studies have affirmed the role of micro-
biomes other than Helicobacter pylori, a well-known 
carcinogen [6], in gastric lesions [7–10]. In the gastro-
intestinal tract, trillions of microorganisms colonize 
the mucosal surface and lumen, constantly releasing 
immunomodulatory molecules that interact with and 
shape the immune system [11]. Analyses of alterations 
in gastric mucosa microbial changes at different stages 
of gastritis including superficial gastritis, atrophic gas-
tritis, intestinal metaplasia, and gastric cancer found 
that shifts in gastric microbial composition are associ-
ated with progression toward a more advanced form of 
gastric disease [10, 12, 13].

Next-generation sequencing of fecal samples pro-
duced tens of millions of reads per sample, allowing 
for comprehensive analysis of both rare and abundant 
microbes with high genome sequencing coverage [14]. 
Furthermore, at this depth of sequencing, de novo pre-
diction of genes is also possible [15].

Notably, the majority of microbiome studies on gas-
tric diseases are limited to gastric mucosal samples 
utilizing 16S rRNA sequencing. In contrast, we per-
formed whole metagenome sequencing to enhance the 
detection of bacterial species, examining both rare and 
abundant species, and employed multiple bioinformat-
ics approaches to investigate the potential targets of the 
microbiome that could serve as indicators for distin-
guishing between chronic gastritis and gastric cancer.

Materials and methods
Study setting and sample
The study participants were recruited from the Kaohsi-
ung Medical University Chung-Ho Memorial Hospital, 
as well as from multisite Taipei Medical University hos-
pitals, which include Taipei Medical University Hospital, 
Wanfang Hospital, and Shuang-Ho Hospital. The par-
ticipants were grouped into chronic gastritis (CG, n = 33) 
and gastric cancer (GCA, n = 32). Within these groups, 
further sub-groups were categorized: chronic gastritis 
without precancer lesions (non-intestinal metaplasia, 
NIM, n = 18), chronic gastritis with pre-cancer lesions 
(intestinal metaplasia, IM, n = 15), early-stage gastric 
cancer (Phase I and II, n = 13) and late-stage gastric can-
cer (Phase III and IV, n = 19). The cancer stage was clini-
cally determined according to American Joint Committee 
on Cancer staging manual 8th Edition. The diagnosis of 
chronic gastritis with NIM, chronic gastritis with IM, 
and gastric cancer were confirmed through histological 
examination of endoscopic mucosal biopsies conducted 
by pathologists.

Exclusion criteria were participants with; any sig-
nificant infectious disease requiring intensive antibiotic 
treatments within 6 months before fecal sample collec-
tion, a history of alcohol/substance dependence, any 
disease that needed immunosuppressant therapy, inflam-
matory bowel disease, indeterminate colitis, irritable 
bowel syndrome, colitis, persistent or chronic diarrhea 
of unknown etiology, and recurrent Clostridium difficile 
infection.

This study was approved by the Institutional Review 
Boards of Kaohsiung Medical University (IRB No. 
KMUHIRB-G(I)-20,200,024), Taipei Medical University 
(IRB No. N202108054), and Hebrew SeniorLife (IRB No. 
2019–50) in Boston, MA, USA. All participants provided 
informed consent to participate in this study.

The study collected de-identified clinical and sur-
vey information from participants, only including data 
relevant to the research objectives. The procedures 
conducted in this study adhered to ethical standards 
established by the institutional and/or national research 
committees, following the principles of the 1964 Helsinki 
Declaration and its later amendments or equivalent ethi-
cal standards.
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Fecal sample collection and DNA extraction
The stool samples for the study were collected using 
OMNIgene-GUT tubes (OM-200, DNA Genotek). Each 
participant collected approximately 1 g of stool at home 
following the user instructions provided by the manufac-
turer. The collected samples were then returned to clini-
cians at Kaohsiung Medical University and Taipei Medical 
University hospitals. Since OMNIgene-GUT tubes do not 
need a cold chain, the collected samples were stored at 
room temperature for a period of up to 2 months (https:// 
www. dnage notek. com/ ROW/ produ cts/ colle ction- 
 micro biome/ omnig ene- gut/ OM- 200. htm).

For DNA extraction, subsampled stool specimens 
of approximately 100 mg were processed using the 
QIAamp PowerFecal Pro DNA Kit from Qiagen (catalog 
number 51804) [16]. All lysis, separation of impurities 
and purification procedures adhered to the manufac-
turer’s protocol provided by the QIAamp PowerFecal 
DNA Kit. The QC criteria were applied to ensure the 
reliability of the extracted DNA. These criteria included 
a minimal DNA concentration of 30 ng/μl with no seri-
ous degradation observed by gel electrophoresis with a 
DNA fragment length over 1 kb and the total amount 
was higher than 300 ng.

Whole metagenome shotgun sequencing (WMGS)
Next‑generation sequencing library construction
Next-generation sequencing library preparations fol-
lowed the protocol of the VAHTS Universal DNA Library 
Prep Kit for Illumina (ND607–01, Vazyme Biotech). For 
each sample, 200 ng genomic DNA was randomly frag-
mented to sizes less than 500 base pairs (bp) using a soni-
cation method with an S220 Focused-ultrasonicator from 
Covaris. The fragments underwent End Prep Enzyme 
Mix for end repair, 5′ phosphorylation and dA-tailing 
in a single reaction, followed by T-A ligation to attach 
adaptors to both ends. The adaptor-ligated DNA was 
subjected to size selection using beads. and fragments of 
approximately 470 bp (with the approximate insert size of 
350 bp) were recovered. Each recovered DNA was ampli-
fied by PCR using P5 and P7 primers, with both prim-
ers carrying sequences that can anneal with the flowcell 
to perform bridge PCR and P5/P7 primer carrying index 
allowing for multiplexing. The PCR products were puri-
fied using beads, validated and quantified by Qubit 3.0 
Fluorometer (Cat No Q33216, Invitrogen).

The resulting library preparations were subjected to 
validation and quantification using a Qubit 3.0 Fluo-
rometer (Cat No Q33216, Invitrogen). With the raw 
sequencing data, both the amount and the quality of the 
sequencing data were checked by the software Seqtk 
(v1.2-r94).

Covariate information
Clinical information used as covariates included age, sex, 
BMI, comorbidities (hypertension, dyslipidemia, and dia-
betes), and Helicobacter pylori infection/eradication his-
tory. Two different Food Frequent Questionnaires (FFQs) 
for recent diet information were collected along with 
fecal samples from all the subjects who participated in 
the study. The FFQ survey included checklists assessing 
recent and regular dietary habits about food types (fish, 
meat, vegetables, dairy products, etc.), food intake fre-
quency, prebiotics, and probiotic use.

Statistical analyses
Baseline characteristics of subjects
Baseline characteristics of subjects were expressed as 
mean ± standard deviation (SD), and frequency or pro-
portion (percentage) and were compared using the 
unpaired Student t-test, and Fisher’s exact test or chi-
square test, respectively. FFQs were tested by the Mann-
Whitney U (Wilcoxon rank-sum) test between CG 
and GCA. To examine whether food consumption was 
associated with any differential microbiome features as 
well as any covariates, we performed Hierarchical All-
Against-All Significance Testing (HAllA) [17].

Microbiome taxonomic and functional profiles
We used Whole Metagenome Shotgun (wmgx) workflow 
(https:// github. com/ bioba kery/ bioba kery_ workf lows# 
whole- metag enome- shotg un- wmgx) in biobakery pipe-
lines [18] to process the paired-end raw metagenome 
shotgun sequencing FASTQ files. The first step involved 
filtering low-quality or irrelevant reads from the metage-
nome shotgun sequencing data. This was done using 
the KneadData tool (version 0.70). Taxonomic profiles 
of shotgun metagenomes were generated using Met-
aPhIAn2 (version 2.7.8). MetaPhIAn2 utilizes a library 
of clade-specific markers to provide profiling of various 
taxonomic groups, including bacteria, archaea, eukary-
otes, and viruses. Functional profiling was performed by 
HUMAnN2. HUMAnN2 constructed a sample-specific 
reference database based on the pangenome of a subset 
of the species detected by MetaPhlAn2 in the sample. 
This allowed for the determination of the abundance 
profiles of gene families (UniRef90s). The information 
on which species contributed to these genes was strati-
fied by StrainPhlAn and could then be summarized into 
higher-level gene groupings. Protein-coding sequences in 
the constructed pangenomes were pre-annotated to their 
respective UniRef90 families [19]. UniRef90 represents 
a comprehensive and nonredundant protein sequence 
database.

https://www.dnagenotek.com/ROW/products/collection-microbiome/omnigene-gut/OM-200.htm
https://www.dnagenotek.com/ROW/products/collection-microbiome/omnigene-gut/OM-200.htm
https://www.dnagenotek.com/ROW/products/collection-microbiome/omnigene-gut/OM-200.htm
https://github.com/biobakery/biobakery_workflows#whole-metagenome-shotgun-wmgx
https://github.com/biobakery/biobakery_workflows#whole-metagenome-shotgun-wmgx
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Normalization and filtering process
Normalization plays a crucial role in differential abun-
dance analysis, especially when dealing with metage-
nome sequencing data, as differences in sequencing 
depth can make read counts incomparable across sam-
ples. We used the total sum scaling (TSS) [20] that 
aimed to address the heteroscedasticity of the samples 
observed in the samples, thereby stabilizing the vari-
ance of the data [21] after removing archaeal and viral 
taxonomies in the samples. After normalizing the raw 
measures into relative abundances, we limited our anal-
ysis to only microbial features at each taxon level that 
were prevalent and abundant with mean relative abun-
dance > 0.01% in at least 10% of the samples.

Microbiome community diversity
The Shannon index [22] was used to measure α-diversity. 
Alpha diversity assesses the diversity of species within 
a single sample or group of samples. To identify differ-
ences in alpha diversity between groups, an independent 
two-sample t-test was applied. β-diversity was computed 
using Bray-Curtis dissimilarity and summarized using 
weighted and unweighted principal coordinates analysis 
(PCoA) [23]. Statistical differences in beta diversity met-
rics between groups were tested by permutation multi-
variate analysis of variance (PERMANOVA).

Differentially abundant microbiome features

Multiple bioinformatics approaches We employed a 
comprehensive approach to minimize the likelihood of 
false positive or false negative findings. For univariable 
association analysis, Wilcoxon-Sum Rank test, RNASeq 
(EdgeR) implementing empirical Bayes estimation, exact 
tests, generalized linear models and quasi-likelihood 
tests based on the negative binomial distributions [24], 
Linear discriminant analysis effect size (LEfSe) that can 
highlight features that are particularly relevant in distin-
guishing different classes or groups [25] were used. For 
multivariable analysis, backward stepwise multivariable 
generalized linear regression analyses were performed 
adjusting for age and sex utilizing MaAsLin (Multivari-
ate Association with Linear Models) [26]. Additionally, 
Random Forest variable of importance (VIMP) was com-
puted for feature selection using the randomforestSRC 
R package [27]. HAllA method was implemented to test 
correlation among all pairs of FFQ and species abun-
dance. HALLA model tests for correlation among all 
pairs of variables in a high-dimensional dataset, and pri-
oritizes statistically promising candidate variables. HAllA 
utilizes hierarchical false discovery correction to limit 
false discoveries and loss of statistical power attributed 
to multiple hypothesis testing.  All the comparisons were 

two-tailed and the False Discovery Rate (FDR) method 
was used for multiple testing corrections with adjusted p 
values (q values) in all approaches. All analyses were per-
formed in the biobakery pipeline [18], Microbiomeana-
lyst platform [28] and R version 4.1.2.

Results
Baseline characteristics and FFQ
A total of 33 CG and 32 GCA fecal samples were collected. 
Within CG, there were NIM (n = 18) and IM (n = 15). 
Within GCA, there were early-stage GCA (n = 13) and 
late-stage GCA (n = 19). The mean age was younger in CG 
but was not significantly different. Sex, BMI, hyperten-
sion, dyslipidemia, diabetes, and Helicobacter pylori his-
tory (eradication history) were comparable between the 
CG and GCA groups (Supplementary Table 1).

Among the 44-food frequency questionnaire (FFQ) 
items, 5 items were significantly different between the 
two groups after multiple testing corrections (q < .05) 
(Supplementary Table 2). Notably, mushroom consump-
tion displayed significant association with Dorea_formi-
cigenerans and Phascolarctobacterium_succinatutens in 
HALLA clustering (q = 0.007 and 0.010, respectively). 
Since both showed higher abundance in GCA in bio-
marker differential analysis in species, we removed these 
2 species from the final results to prevent false posi-
tives from possible confounding effects of mushroom 
consumption.

Microbiome community diversity
Microbiome community analysis for alpha (Shannon 
index) and beta diversity (PCoA) demonstrated no sta-
tistically significant difference in phylum, genus, or spe-
cies between the 2-group comparison of CG and GCA. 
These results remained consistent when extended to 
the four-group comparison involving NIM, IM, early-
stage GCA, and late-stage GCA (Supplementary Fig. 1 
& 2). A whole taxa profile for 65 samples is available in 
Supplementary Table 3.

Differential abundances
Phylum
In the Wilcoxon-Sum Rank test, Actinobacteria and Fuso-
bacteria exhibited significantly different abundances 
between the two groups among 7 phyla. Actinobacteria 
demonstrated a higher abundance in individuals with 
CG, while Fusobacteria were more abundant in those 
with GCA (Table 1).

In LEfSe analysis, for the 2-group comparison, only 
Fusobacteria was significantly higher in GCA after mul-
tiple testing corrections (q =  0.041, LDA score 4.27). In 
LEfSe analysis, among the 4-group comparison, Fusobac-
teria presented the highest abundance in the late-stage 
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GCA but was not statistically significant (q = 0.27, LDA 
score 4.47) (Fig. 1 & Supplementary Table 4). Age and sex 
adjusted MaAslin model indicated that Fusobacteria was 
nominally significant (p = 0.029) with beta 0.685 (se 0.33) 
but multiple testing corrections turned to null (q = 0.309) 
(Supplementary Table 5).

Genus
In the genus level analysis, 64 genera were used for final sta-
tistical analysis. Fifteen genera were significant in Wilcoxon-
Sum Rank test. Veillonella, Sutterellaceae_unclassified, 
Fusobacterium, Parabacteroides, Phascolarctobacterium, 

Sutterella,Oscillibacter, Haemophilus and Coprococcus-
contributed to GCA whereas Acinetobacter, Enterococcus, 
Adlercreutzia, Collinsella,  Pseudomonas and Bifidobac-
terium to CG (Supplementary Table  6). The same results 
were found in LEfSe analysis before multiple testing (Fig. 2 
(A) & Supplementary Table  7). LEfSe analys in 4-group 
comparison showed Acinetobacter contributed to NIM, 
Anaerotruncus and Adlercreutzia to IM and Fusobacte-
rium, Oscillibacter and Parabacteroides to late-stage GCA 
(Fig. 2 (B) & Supplementary Table 8).

In EdgeR analysis, Eubacterium, Collinsella, Pseu-
domonas and Morganella were significantly less but 
Lactobacillus is more abundant in GCA in the 2-group 
comparison. In 4-group comparison, Megamonas and 
Pseudomonas were more abundant in NIM whereas 
Eubacterium showed higher abundance in IM than the 
other groups (Table 2).

In MaAsLin analysis (age and sex-adjusted), none of 
them surpassed multiple testing corrections but most of 
them remained nominally significant (p < .05) (Supple-
mentary Table 9).

Species
After filtering low-abundance species (refer to nor-
malization and filtering process in method section), 
156 species remained for further analysis. In the Wil-
coxon Rank Sum test, 29 species had significantly 

Table 1 Differential abundance by Wilcoxon Rank‑Sum Test 
between chronic gastritis and gastric cancer in Phylum

Significant results are made in bold type.

Phylum Median difference Mean difference Wilcoxon
p-value

Actinobacteria 0.046 0.059 0.025
Bacteroidetes −0.130 −0.099 0.059

Firmicutes −0.045 0.024 0.759

Fusobacteria 0.000 −0.004 0.006
Proteobacteria −0.003 0.020 0.655

Synergistetes 0.000 0.000 1.000

Verrucomicrobia 0.000 −0.001 0.724

Fig. 1 Differential abundance in phylum between chronic gastritis and gastric cancer. Footnote: (A) Y axis: relative abundance by percent value
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different abundances between CG and GCA. Fusobac-
terium_mortiferum is among one of them (p = 0.02) 
(Fig. 3). Dorea_formicigenerans and Phascolarctobacte-
rium_succinatutens that showed significant association 
with mushroom consumption in HALLA analysis also 
presented significance, we removed these 2 species in a 
later analysis (Supplementary Table 10). Using the Ran-
dom Forest algorithm, classification of CG and GCA 
showed modest out of bag (OOB) error rates of 21.9, 
and 27.3%, respectively. In 4 group classifications, Ran-
dom Forest presented high OOB error, NIM (66.7%), 
IM (60%), early-stage GCA (100%), and late-stage GCA 
(42.1%) (Supplementary Fig. 3).

In the age and sex adjusted MaAslin analysis in species, 
Bacteria_caccae was the most significant species among 

a total of 16 nominally significant species (p < .05) but 
none of them surpassed the multiple testing (Supplemen-
tary Table 11). Additional validation through the Random 
Forest VIMP (Fig.  4 & Supplement Table  12) analysis, 
11 species were finally selected as important features 
having significant VIMP scores above 10 as well as sig-
nificant findings from MaAsLin results (Fig. 5 & Table 3). 
Bifidobacterium_longum, Enterococcus_faecium and 
Lachnospiraceae_bacterium_5_1_63FAA showed higher 
abundance in CG compared to GCA whereas Bacte-
roides_caccae, Bifidobacterium_dentium, Streptococcus_
anginosus, Coprococcus_catus, Lactobacillus_fermentum, 
Parabacteroides_distasonis, Oscillibacter_unclassified and 
Lactobacillus_mucosae presented higher abundance in 
GCA (Fig. 5 & Table 3).

EdgeR analysis among the 4-group comparison, Eubac-
trium_rectale was significantly higher in IM (logFC 2.120, 
SE: 14.127, q = 0.002). We also explored 4 group compari-
sons in important features found in Table  3. Although 
they were not statistically significant in EdgeR results, 
Bacteroides_caccae presented a higher abundance in late-
stage GCA, whereas Bifidobacterium_longum showed 
a higher abundance in IM, and Lactobacillus_mucosae 
showed a higher abundance in early-stage GCA (Fig. 6).

Metabolic pathway analysis
Age, sex and BMI adjusted MasAsLin analysis indi-
cated that the superpathway of L-lysine, L-threonine 
and L-methionine biosynthesis I and II, superpathway 
of pyrimidine ribonucleosides salvage and superpathway 

Fig. 2 LEfSe analysis between chronic gastritis and gastric cancer in the genus

Table 2 Significant genera by EdgeR analysis

Name Log2FC LogCPM Pvalues FDR

2‑group comparison

Eubacterium −1.471 15.17 9.021E‑5 0.004

Lactobacillus 1.484 15.042 1.205E‑4 0.003

Collinsella −1.245 14.94 2.606E‑4 0.005

Pseudomonas −1.283 14.614 8.499E‑4 0.012

Morganella −1.176 14.654 0.002 0.029

4‑group comparison

Megamonas −1.905 14.75 6.897E‑4 0.040

Pseudomonas −1.559 14.614 0.002 0.046

Eubacterium 1.449 15.17 0.002 0.046
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of N-acetylglucosamine, N-acetylmannosamine and 
N-acetylneuraminate degradation were more enriched in 
GCA. In particular, GLCMANNANAUT-PWY; super-
pathway of N-acetylglucosamine, N-acetylmannosamine 
and N-acetylneuraminate degradation was associated 
with Fusobacterium_varium (Supplementary Table 13).

Discussion
The overall composition and community diversities of 
the microbiome were similar between the CG and GCA 
groups irrespective of the specific subgroups within these 
categories. These results align with previous findings 
reported in other studies [29, 30].

In particular, we found that an enrichment of micro-
biota belonging to the phylum Fusobacteria was signifi-
cantly associated with GCA, which has been confirmed 
in multiple studies [29, 31–33]. The genus Fusobacte-
rium was frequently abundant in patients with gastric 
cancer, and a receiver operating characteristic curve 
analysis revealed that species Fusobacterium_nuclea-
tum exhibited a diagnostic ability for gastric cancer 
[29]. The distribution of genus Fusobacterium in tumor 
tissues was demonstrated [31]. Fusobacterium_nuclea-
tum, which originates from the oral cavity, can poten-
tiate the carcinogenesis of colorectal cancer involving 
the activation of Wnt target genes which increase the 
secretion of proinflammatory cytokines and evade 

anticancer immune response [32, 33]. Hsieh et al have 
shown that Fusobacterium_nucleatum colonization 
leads to a worse prognosis in GCA patients with H. 
pylori positivity [29]. However, we didn’t detect Fuso-
bacterium_nucleatum from fecal samples in our study, 
instead, we detected Fusobacterium_mortiferum and 
Fusobacterium_varium by WMGS. This might be due 
to the sample difference, most of the previous study 
findings for Fusobacterium_nucleatum were from sam-
ples collected from stomach tissues. Fusobacterium_
mortiferum was significantly enriched in the GCA 
group in univariate analysis and Fusobacterium_varium 
was significantly associated with the microbial meta-
bolic pathway of GLCMANNANAUT-PWY which was 
highly enriched in the GCA group in our study. Despite 
limited reports about Fusobacterium_varium, in a study 
among the patients with Fusobacterium infections in 
Korea, patients with Fusobacterium_varium infections 
were older and had a higher proportion of nosocomial 
infections than the other groups. The Fusobacterium 
nucleatum and Fusobacterium_varium groups showed 
higher in-hospital mortality than the other patients 
with Fusobacterium species [34]. Fusobacterium_var-
ium as well as species belonging to Fusobacteria might 
be potential targets to study in the future in microbi-
ome research.

Fig. 3 Heat Tree by Wilcox‑Rank Sum test. Footnote: Red color means higher abundance in chronic gastritis (CG). Green color means higher 
abundance in gastric cancer (GCA)
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As well-known pathogenic species, Clostridium per-
fringens, Clostridium perfringens 13, Clostridium per-
fringens A99 and Escherichia coli K-12 substr. also share 
GLCMANNANAUT-PWY. These species can generate 
carbon and nitrogen sources through these N-acetylglu-
cosamine, −mannosamine and -neuraminic acid deg-
radation pathways [35] which might provide sources of 
N-nitroso compound (NOC) in affected patients.

It is known that patients with GCA have higher 
NOC levels than healthy subjects [36]. Genera Veillonella 
and Lactobacillus which were found significantly high 
in the GCA group in our genus analysis, contributed to 
gastric carcinogenesis by stimulating the production of 
NOCs [37, 38]. Veillonella was significantly lower in gas-
tritis subjects than in gastric adenoma or advanced gas-
tric cancer subjects in the previous study [39].

 At the species level, we also found a few protective 
species that were more abundant in CG than GCA . Bifi-
dobacterium longum were higher in CG and according 
to the previous study, they were more abundant in the 

cancer patients who responded well to chemotherapy 
than non-responders [40]. Bifidobacterium_longum 
strains regulate oxidative stress by regulating the produc-
tion and accumulation of ROS (reactive oxygen species), 
thereby reducing the symptoms of Inflammatory Bowel 
Disease [41]. Lachnospiraceae_bacterium_5_1_63FAA 
belongs to Lachnospiraceae which has been linked to 
protection from colon cancer in humans, mainly due 
to the association with the production of butyric acid, a 
substance that is important for both microbial and host 
epithelial cell growth [42].

 Whereas a few pathogenic species were also 
detected. Among them, Bacteroides_caccae, a patho-
genic species previously found in cultures from infections 
in the appendix and the peritoneal abdomen [43] was 
higher in GCA.

Bacteroides_caccae degraded the mucus [44], which 
would lead to a condition of a “leaky gut” and there-
fore increased the permeability of the intestinal bar-
rier. Clinical and experimental data suggested the 

Fig. 4 Top 30 features by Variable importance by Random Forest. Footnote: Red‑colored bars are significant species within 95% CI of VIMP scores
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importance of intestinal hyperpermeability in the 
inflammatory changes of various diseases including GI 
cancers [45]. Streptococcus_anginosus showed higher 
habitation in gastric tumors in the previous study [46]. 
Oscillibacter has been positively correlated with gut 
permeability [47].

However, some of the results are controversial from 
the previous findings. Bifidobacterium_ dentium, 
appeared to protect mucin glycans which is vital in 
the gut barrier [48]. Lactobacillus_fermentum UCO-
979C is a good probiotic for the protection against H. 
pylori infections [49]. Enterococcus_faecium is the main 
causative agent of infection in humans and frequently 
demonstrates resistance to vancomycin, ampicillin, 
and other antimicrobials [50]. Coprococcus was less 

abundant in colon cancer compared to healthy individ-
uals, although there was no evidence for its protective 
role against colon cancer [51]. Parabacteroides_dista-
sonis attenuates toll-like receptor 4 signaling and Akt 
activation and blocks colon tumor formation in high-
fat diet-fed azoxymethane-treated mice [52]. Lactoba-
cillus mucosae has been reported as cardio-protective 
[53].

Based on these findings, we assume CG can also pre-
sent a degree of gastric disease related microbial per-
turbations which can result in higher abundance of 
pathogenic microbiota found in CG as well.

In this study, we detected species-level microbi-
ome markers and associated metabolic pathways 
by using WMGS, which enabled us to find novel 

Fig. 5 Important species between chronic gastritis and gastric cancer by MaAsLin and VIMP (VIMP score > 2) A Bacteroides_caccae 
B Bifidobacterium_longum C Streptococcus_aginosus D Lactobacillus_fermentum E Parabacteroides_distasonis F Oscillibacter_unclassified
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species belonging to Fusobacterium known to be asso-
ciated with poor prognosis of gastric diseases or gas-
tric cancer. We also applied multiple bioinformatics 
approaches encompassing various patient characteris-
tics and food consumption history which would affect 
the microbiome composition and delineate potential 
microbiome signatures that could be utilized as diag-
nostic or treatment biomarkers.

We also have limitations to address. First, due to the 
small sample size, the generalization of these results 
would be limited. However, multiple previous studies 
generated similar results, especially in the Asian popu-
lation, which might validate this study’s results. Second, 
most study findings did not surpass multiple testing cor-
rection but we incorporated Random Forest VIMP scores 
to add further evidence to species found in MaAsLin 

Table 3 Important species differentiating CG and CGA 

MaAsLin Random Forest VIMP

Species Beta SE Pvalue VIMP score 95% CI

Bacteroides_caccae 2.43 0.891 0.008 2.543 0.905–4.182

Bifidobacterium_longum −1.8 0.669 0.009 1.988 0.315–3.661

Bifidobacterium_dentium 0.688 0.265 0.012 1.249 0.522–1.976

Streptococcus_anginosus 1.18 0.473 0.015 3.966 3.802–4.850

Coprococcus_catus 0.36 0.147 0.017 1.081 0.746–1.416

Lactobacillus_fermentum 1.36 0.569 0.020 2.230 1.578–2.883

Parabacteroides_distasonis 1.36 0.577 0.022 2.135 0.769–3.502

Enterococcus_faecium −0.576 0.253 0.026 1.272 0.792–1.753

Lachnospiraceae_bacterium
_5_1_63FAA

−0.786 0.35 0.028 0.556 0.300–0.812

Oscillibacter_unclassified 1.33 0.621 0.036 2.012 0.954–3.071

Lactobacillus_mucosae 0.406 0.194 0.040 0.906 0.425–1.387

Fig. 6 Distribution of microbiome abundance across 4 groups in important 4 species A Bacteroides_caccae B Bifidobacterium_longum 
C Lactobacillus_mucosae D Eubacterium_rectale
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multivariable models. We assume this study added clini-
cally meaningful new findings to the previous microbi-
ome studies in the gastric disease area. Third, medication 
use might have affected the gut microbial composition, 
however, due to the lack of information on medication 
use, we could not adjust this factor in the multivariable 
model. Fourth, Helicobacter_pylori is a well-established 
risk factor for gastric cancer, and it is worthwhile to 
investigate the association between Helicobacter_pylori 
and other microbiome features. However, we used fecal 
samples in this study, and Helicobacter_pylori which usu-
ally inhabits the upper gastric region was not detected, 
which limited additional exploration on Helicobacter 
pylori. Finally, although we sub-grouped the patients in 
order to dissect the different microbiome features corre-
sponding to different stages of gastric diseases, the cross-
sectional approach itself has limitations portraying only 
a snapshot of the time we collected the fecal samples. 
Therefore, designing longitudinal time-varying fecal sam-
pling approaches within individuals is warranted.

Conclusion
CG and GCA share similar microbial community char-
acteristics. However, several distinctive microbiome 
pathogenic features including Fusobacteria, Bacte-
roides_caccae, and Streptococcus_anginosus might be 
represented as signature indicators for the progression 
of CGA. In addition, Bifidobacterium_longum, and Lach-
nospiraceae_bacterium_5_1_63FAA might be protective 
biomarkers against advanced gastric diseases.
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