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Abstract 

Kojic acid is a wonderful fungal secondary metabolite that has several applications in the food, medical, and agri‑
culture sectors. Many human diseases become resistant to normal antibiotics and normal treatments. We need 
to search for alternative treatment sources and understand their mode of action. Aspergillus flavus ASU45 (OL314748) 
was isolated from the caraway rhizosphere as a non‑aflatoxin producer and identified genetically using 18S rRNA 
gene sequencing. After applying the Box‑Behnken statistical design to maximize KA production, the production 
raised from 39.96 to 81.59 g/l utilizing (g/l) glucose 150, yeast extract 5,  KH2PO4 1,  MgSO4.7H2O 2, and medium pH 3 
with a coefficient (R2) of 98.45%. Extracted KA was characterized using FTIR, XRD, and a scanning electron microscope. 
Crystalized KA was an effective antibacterial agent against six human pathogenic bacteria (Bacillus cereus, Staphylo-
coccus aureus, Escherichia coli, Klebsiella pneumonia, Serratia marcescens, and Serratia plymuthica). KA achieves high 
inhibition activity against Bacillus cereus, K. pneumonia, and S. plymuthica at 100 μg/ml concentration by 2.75, 2.85, 
and 2.85 compared with chloramphenicol which gives inhibition zones 1, 1.1, and 1.6, respectively. Crystalized KA had 
anticancer activity versus three types of cancer cell lines (Mcf‑7, HepG2, and Huh7) and demonstrated high cyto‑
toxic capabilities on HepG‑2 cells that propose strong antitumor potent of KA versus hepatocellular carcinoma. The 
antibacterial and anticancer modes of action were illustrated using the molecular docking technique. Crystalized kojic 
acid from a biological source represented a promising microbial metabolite that could be utilized as an alternative 
antibacterial and anticancer agent effectively.

Keywords Antibacterial agents, Anticancer agents, Molecular docking, Box‑Behnken design, Aspergillus flavus, Kojic 
acid

Introduction
Kojic acid acts as an organic acid and is created as a 
secondary biological metabolite during the aerobic fer-
mentation of different foods by various types of fungi. 
Around 58 different fungus strains have been employed 
to produce kojic acid, particularly those belonging to 
Aspergillus, Penicillium, Mucor, etc. [1]. The chemical 
identification of KA is 5-hydroxy-2-hydroxymethyl-ɣ-
pyrone [2]. The molecular formula is  C6H6O4. It is a flam-
mable white crystalline odorless powder with a molecular 
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weight of 141.1 [3] and a melting point of 151 °C–154 °C 
[4]. KA is soluble in ethanol, water, and ethyl acetate; 
however, it has less solubility through chloroform, ether, 
and pyridine [5]. It is interactive at almost all the ring 
positions, and generates significant industrial chemi-
cal products like azo dyes, metal chelates, pyridines, and 
ethers [3, 5]. It has weak acidic capabilities that enable 
it to combine with several metal ions forming salts [6], 
and its maximum UV absorption was demonstrated at 
280–284 nm [7]. It has crystalized properties that result 
in needle structures [8].

Kojic acid is fundamentally produced by Aspergillus fla-
vus [9–13], A. flavus var. columnaris [11, 14], A. oryzae 
[15–17], A. oryzae var. effusus [18], A. tamarii [14, 19], and 
A. parasiticus [9, 14, 20]. It was utilized as an anti-browning 
agent, particularly in soy sauce, miso, sake preparations 
[21, 22], and for the preservation of canned foods to pre-
vent browning, and as a flavor enhancer [23, 24]. KA inhib-
its the melanin build in human skin through inhibition of 
tyrosinase enzyme activity which was in charge of melanin 
synthesis [25, 26]. KA was used in skin care products as de-
pigmenting and skin-lightening products like gels, creams, 
sunscreens, bath salts, and baby lotions [27, 28]. Moreover, 
the combination of KA with chitosan was utilized in bio-
degradable plastics industries [29, 30], and the combination 
with vanadium utilized it as an anti-diabetic agent [31].

Infectious illnesses especially by bacteria have 
become more complex and frequently hard to cure, 
which expands the morbidity and even mortality [32]. 
Although, antibiotics are utilized for both the avoid-
ance and curing of bacterial diseases, uncontrolled use 
generates antibiotic bacterial resistance [33]. In a situa-
tion when microbes resist the medicine the speeding of 
infection spread makes infections challenging to treat 
[34]. The resistance rates of Klebsiella pneumoniae, 
Escherichia coli, and Staphylococcus aureus are increas-
ing every day from 4% reaching 92.9% resistance to usu-
ally utilized antibiotics [32, 35]. Despite these issues, 
no new antibiotics were discovered during the last few 
years [32], and researchers need to seek for new anti-
microbial agents to overcome the bacterial resistance 
issue. Kojic acid has recently attracted interest due to its 
antimicrobial and insecticidal qualities [36]. Kojic acid 
acts as an effective antimicrobial agent against many 
fungi and bacteria comparatively than antibiotics like 
ceftazidime and nitrofurantoin, because of its acidic 
nature [20, 37]. It could inhibit several bacterial genera 
like Aerobacter, Corynebacterium, Bacillus, Clostridium, 
Diplococcus, Micrococcus, Klebsiella, Escherichia, Neis-
seria, Pseudomonas, Chromobacterium, Staphylococcus, 
Proteus, and Vibrio [38]. Kojic acid was utilized as an 
active Tubercle bacilli inhibitor in humans [39]. Previous 

studies had shown that KA was more active in Gram-
negative bacteria than positive ones [40, 41].

Kojic acid can be taken against aging and cancer as an 
oral medicine; KA from A. tamarii MM11 was demon-
strated as an effective antioxidant agent with high cyto-
toxic activity to human liver cancer (HepG-2 cell line), 
confirming their strong antitumor activity to hepatocel-
lular carcinoma [42]. Another study indicated that KA 
combination therapy with Mannich base (ciprofloxacin) 
has a significant antitumor activity to HepG-2 [43]. It 
has a suppressive effect on cancerous cell proliferation 
[44]. Halogenated KA derivatives were utilized also in 
leukemia treatment [45]. It was revealed that 5-OH-
2Chloromethyl-4-pyran-4-one and 5-benzyloxy-2-thri-
ocyanatomethyl-4-pyran-4-one inhibits the genetic 
materials, cytoplasmic phosphorylation, and protein syn-
thesis that reduces the growth of neoplastic cells [46, 47]. 
Seven kojic acid derivatives were cytotoxic in HepG-2 cell 
line [48]. Human skin (A431) and human breast (MCF7) 
carcinoma cells were treated earlier with derivatives of 
KA like 5-benzyloxy-2-selenocyanatomethyl4-pyranone 
(P763) and 5-methoxy-2-selenocyanatomethyl-4-pyra-
none (P764) for 24, 48 and 72 h by Fickova et  al. [49] 
and he stated that they cause intracellular huge injury 
to mitochondria and lysosomes with the highest growth 
inhibitory by P763 in both cell lines. Azidometalkojates 
zinc derivatives exhibit cytotoxic activity against human 
HeLa tumor cells [3].

Previous studies focused on the antibacterial effect of 
chemically synthesized KA, while the anticancer activ-
ity of biological KA wasn’t investigated in most previous 
researches only a few tested the activity of crude KA on 
HepG-2. The present work aims first to enhance KA pro-
duction using statistical experimental design, extract, and 
crystallized KA from A. flavus ASU45 (non-aflatoxin pro-
ducer). Second, investigate the antibacterial and antican-
cer activities of crystalized KA (from Aspergillus flavus 
ASU45) against six human pathogenic bacteria and three 
types of cancer cell lines; mammary carcinoma (Mcf-7), 
and hepatocellular carcinoma (HepG2, and Huh7) compar-
ison with chemically synthesized KA. Third clear the pos-
sible antibacterial and anticancer mechanisms of KA using 
the molecular docking technique as a bioinformatics tool.

Materials and methods
Aspergillus, aflatoxins testing and identification
Fifty-two rhizospheric fungal isolates were tested for 
their KA production capabilities [14]. Six isolates were 
highly kojic acid producers and were tested for aflatoxins 
production according to El-Kady and Moubasher [50]. 
Sterilized potato glucose broth medium (20 g potato and 
2 g glucose in 100 ml distilled water) inoculated with 2% 
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inoculum (2 ×  105 spore/ml) and incubated at 28 ± 1 °C. 
After 10 days, the cultures were mixed with the same vol-
umes of chloroform for 10 min, filtrated, then the chloro-
form layer separated and evaporated to 1 ml. Thin layer 
chromatography (TLC) was used for aflatoxins detection 
on a silica gel plate (60 GF254) injected with extracts, 
and put in a glass chamber containing chloroform: ace-
tone (90:10, v:v). The plate then was examined at 254 and 
356 nm [17]. Aspergillus flavus ASU45 was molecularly 
identified using the universal primers ITS1 and ITS4 
in SolGent, Daejeon, Korea following White et  al. [51] 
method. Sequences were analyzed by BLAST via the 
National Center of Biotechnology Information (NCBI) 
and compared to sequences from closely related spe-
cies before being placed in the GenBank database with a 
unique accession number [52].

Optimizing kojic acid production using box‑Behnken 
statistical design
Modified Czapek’s glucose broth medium was used as 
fermentation medium (g/100 ml): glucose 10;  KH2PO4, 
0.1; yeast extract, 0.5; and  MgSO4, 0.05, dissolved 
in 100 ml distilled water with initial pH 3 [17]. Box–
Behnken experimental design was assessed for enhanc-
ing the production by A. flavus ASU45 via studying the 
interactions between different parameters, and the main 
and quadratic effects of tested variables. Five parameters, 
3-levels randomized statistical design with 41 runs were 
conducted exploring. Glucose (100, 150, 200; A), yeast 
extract (1, 5, 10; B),  KH2PO4 (0, 1, 3; C),  MgSO4 ·7H2O (0, 
0.5, 2; D) g/l and pH (3, 5, 7; E) were stated by three levels 
low, medium, and high concentrations (− 1, o, + 1). The 
non-linear quadratic design was assessed by the coming 
quadratic Eq. (1) following Yan et al. [53].

Y; predicted KA values, β0; intercept, βi; linear impact, 
βii; squared impact, βij; interaction impact, and  xi,  xij; 
independent variables levels. The relationships between 
the variables were made clear using response surface 
plots, curves of actual and expected values, and statisti-
cal analysis of all data. Derringer’s necessary equations 
were established to ensure the accuracy of the developed 
models.

Extraction, crystallization and characterization 
of crystalized kojic acid
Ten days cultures of A. flavus ASU45 growing on the 
optimum modified Czapek’s glucose broth medium were 
filtrated, centrifuged at 5000 xg for 10 min., and extracted 
using ethyl acetate (1:1, filtrate: solvent). KA was meas-
ured according to Sanjotha et  al. [13] by ferric chloride 

(1)Y = β0 + βi xi + βii xi
2
+ βijxij

reagent at 540 nm using a spectrophotometer. For crys-
tallizing KA; ethyl acetate extracts were stored for 1 day 
at 5 °C, then evaporated using a rotatory evaporator at 
70 °C (120 rpm), and then KA crystals were removed in 
clean filter paper until complete drying [52, 54]. Kojic 
acid crystals were characterized using FTIR, XRD, and 
scanning electron microscope. IR spectral data were 
revealed in spectrophotometer type Nicolet iS10 (4000–
500  cm−1), PXRD pattern was revealed in the 2θ range of 
10–80° via Philips PW 1710 X-ray diffractometer working 
at 40 kV and 40 mA (λ = 1.54060A°) equipped with nickel 
filtered CuKα radiation. Kojic acid crystals were photo-
graphed by scanning electron microscopy (SEM) (JSM 
5400 LV; JEOL, Japan).

Antibacterial activity of crystallized kojic acid
Antibacterial activities of crystalized KA (from Asper-
gillus flavus ASU45) were tested on six different human 
pathogenic bacteria with concentrations 0, 25, 50, 75, 
and 100 μg/ml KA compared with standard KA (chemi-
cally synthesized) using the well-diffusion method fol-
lowing Saleh et  al. [39]. The tested bacterial isolates 
were 2 Gram +ve bacteria (Bacillus cereus ASU 300, and 
Staphylococcus aureus ASU 301) and 4 Gram -ve bacte-
ria (Escherichia coli ASU302, Klebsiella pneumonia ASU 
303, Serratia marcescens ASU 304, and Serratia plymuth-
ica ASU 305). The isolates were cultivated, individually, 
in a nutrient broth medium and incubated for 24 hours 
at 30 °C ± 1 [55, 56]. One ml of each bacterial suspension 
(1 ×  106 CFU/ml) was spread on nutrient agar medium, 
then, using sterilized cork polar (0.5 cm), 3 wells were 
created on the medium of each Petri dish and filled with 
50 μl of crystalized or standard KA dissolved in ethyl ace-
tate. Chloramphenicol was utilized as a positive control 
with 100 μg/ml concentration and ethyl acetate served 
as a negative control. After 48 hours of incubation at 
30 °C ± 1, the growth inhibition was recorded as a clear 
zone around the wells.

Anticancer activity of crystallized KA
Anticancer activities of crystalized KA compared with 
standard KA (0, 25, 50, and 100 μg/ml) were tested in 
Mcf7, HepG2, Huh7 cell lines. DMEM medium contain-
ing L-glutamine, fetal bovine serum, and 10.000 units 
of penicillin/ml and streptomycin as antibacterial was 
obtained from Gibco (Invitrogen, CA. USA). Ethidium 
bromide (EB) and acridine orange (AO) were purchased 
from Sigma (St. Louis, MO, USA). Cell lines were pur-
chased from VACSERA – Cell Culture Unit (Dokky, Giza, 
Egypt), which was originally collected from an American 
Type Culture Collection (ATCC). All the experiments 
were carried out using cells free from mycoplasma. 
The cells were cultured in DMEM medium containing 
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L-glutamine supplemented with 10% (v/v) heat-inac-
tivated FBS, 100 μg/ml streptomycin, and penicillin at 
37 °C in 95% air and 5%  CO2.

MTT assay
Mcf7, HepG2, Huh7 cells (2 ×  103 cells/well) were incu-
bated for 24 h. with 0, 25, 50, and 100 μg/ml crystallized 
and standard KA concentrations in 96-well plates. The 
medium was substituted with fresh medium added to it 
2 mg/ml MTT and incubated for 3 h. at 37 °C in 200 μl of 
DMSO, until formazan crystals dissolved. The quanti-
fication was performed by measuring the absorbance at 
570 nm. Data were expressed compared with the control 
as the average percentage of viable cells [57].

The percentage of cell viability was calculated following 
Eq. (2):

Acridine Orange/ethidium bromide staining assay
HepG2 cells were plated on a 6-well plate (0.5 ×  106 cells/
ml), after 24 hours, the medium was aspirated and fresh 
medium containing crystallized and standard kA (0, 50, 
100 μg/ml) was added and incubated for 24 hours. Then 
cells were stained for 5 minutes with 1% AO/EB dye, 
washed trice using 1X PBS, and examined under a fluo-
rescence microscope.

Scratch assay
A culture of HepG2 cells was loaded in 6-well plates with 
5 ×  105 cells/well density and cultured in DMEM, at 37 °C 
for 24 hours. After aspirating the culture medium, the 
confluent monolayer of cells was scratched using a ster-
ile pipette tip. A fresh medium containing crystallized 
or standard KA (0, 50 μg/ml) was poured over the cells 
and cultured for another 24 hours. Phase contrast images 
of the scratch wound were taken at 0 and 24 hours after 
treatment by KA using a phase contrast microscope. 
Using Image J software, image analysis was performed to 
calculate the wound closure rate.

Molecular docking of KA as antibacterial and anticancer 
agent
Preparation of targeted proteins and ligands; the bind-
ing site of tyrosinase crystal structure and nuclear fac-
tor kappa B  (NFKb) crystal structure were assessed from 
the co-crystallized ligand, through crystal protein (PDB 
codes: 6EI4, found at https:// www. rcsb. org) by using 
MOE 19.0901 Software. First, the molecules of water 
were removed from the protein complex, and the protein 
energy was minimized via the application of MMFF94 

(2)
%Viability =

((

Mean OD sample
)

/
(

Mean OD blank
))

× 100

force fields. Then the binding site rigid structure was 
acquired through fixed atom constraint implementation. 
Finally, the essential amino acids of the target protein 
were defined and processed for docking. Tested ligands 
2D structures were figured via Chem-Bio Draw Ultra17.0, 
USA, and conservative in MDL-SD format (MOE 19.0901 
Software, USA). 3D structures were generated, charged 
fixed and the force field (MMFF94) 0.05 RMSD kcal/mol. 
Was applied to minimize the energy.

Molecular docking and validation: the protein receptor 
was formed, and the prepared ligands were chosen for the 
molecular docking process, the placement, and refine-
ment, were scored through London dG and GBVI/WSA 
dG. The receptor was set rigid however ligands were left 
flexible. In the refinement each molecule establishes 10 
protein interactions, then docking based on the interac-
tion energy selected best-fitted poses with tyrosinase 
crystal structure and nuclear factor kappa B active sites 
and the 3D draw was assessed. All previous processes 
were stetted to predict the binding mode, affinity, orien-
tation of docking pose and the free energy (∆G) binding 
of tested compounds. For molecular docking validation; 
re-docking of co-crystallized ligand by the active site of 
the receptor, calculation of the root mean square devia-
tion (RMSD) was conducted for the reliability and the 
reproducibility of the docking algorithm. Co-crystallized 
ligands were redocked in targeted sites, B5N (crystal 
ligand) redocked in crystal structure of tyrosinase (6EI4) 
with RMSD value 1.22 Å, and crystal structure of  NFKb 
(target site PDB ID: 5T8P) with RMSD value 0.89 Å.

Statistical analysis
The Box–Behnken statistical design data were analyzed 
utilizing American Design Expert 7.0.0 statistical soft-
ware, data were analyzed via quadratic regression and 
one-way ANOVA with a P value of 0.05 for variable inter-
action analysis. Also, the antimicrobial data was analyzed 
using one-way ANOVA using Statistix 8.1 software with 
a P value of 0.05.

Results
Aspergillus, aflatoxins testing and identification
Among six Aspergillus flavus group isolates, only two 
isolates (Aspergillus flavus ASU45 and Aspergillus ory-
zae ASU44) couldn’t produce aflatoxin. Aspergillus flavus 
ASU45 isolated from caraway was selected depending 
on KA production (39.96 g/l KA) and identified geneti-
cally using the universal primers ITS1 and ITS4. ITS 
sequencing of Aspergillus flavus showed high similarity 
(100%) with GenBank accession numbers, Aspergillus 
flavus (Accession no. MT645322.1), A. flavus, (Accession 
no. MT447477.1), A. flavus (CP051065.1), and A. flavus 

https://www.rcsb.org
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(MN547373.1) and was identified as Aspergillus flavus 
ASU45 (Accession no. OL314748).

Optimizing kojic acid production using box‑Behnken 
statistical design
Kojic acid production by A. flavus ASU45 (OL314748) 
in modified Czapek’s glucose broth medium was opti-
mized and evaluated using a Box–Behnken statisti-
cal experimental design. Five fermentation medium 
parameters involving glucose (100, 150, 200; A), yeast 
extract (1, 5, 10; B),  KH2PO4 (0, 1, 3; C),  MgSO4 ·7H2O 
(0, 0.5, 2; D) g/l and pH (3, 5, 7; E), with three-level were 
tested by 41-runs (Table S1). KA predicted values were 
calculated via Eq. (2) for second-order polynomial:

The maximum laboratory value of KA was 81.59 g/l; 
whereas the KA predicted value of 79.24 g/l was obtained 
in run number (24) using glucose 150, yeast extract 5, 
 KH2PO4 1,  MgSO4.7H2O 2 g/l and pH 3 (Table S1). KA 
predicted values were found to be very near to the labo-
ratory data, indicating the accuracy of the set model as 
cleared in Table S1 and Fig.  1. The statistical set model 
suitability, validity, significance, and accuracy were 

(3)

Kojic acid
(

g/l
)

= 55.8+ (6.54) A + (4.76) B+ (−0.44) C+ (−0.58) D+ (−21.08) E+ (9.17) AB

+ (−3.29) AC+ (2.13) AD+ (1.03) AE+ (−5.66) BC+ (−5) BD+ (0.54) BE

+ (−0.24) CD+ 1.53

)

CE+ (0.91) DE+ (−6.5) A2
+ (−8.52) B2

+ (−4.79) C2

+ (−5.09) D2
+ (8.96) E2

analyzed using one-way ANOVA as established in Table 
(S2). The ANOVA F and P- values of the KA set model 
was F; 63.32 and P; <0.0001 indicating the results signifi-
cance at probability ≤0.05. Statistical coefficient (R2) was 
also assessed to clear the model goodness, accuracy, and 
fitting; R2 values of kojic acid production (g/l) was 98.45% 
and adjusted R2 value was 96.89% indicating that all set 
variations were illustrated significantly via the whole sta-
tistical model.

Individual variables of glucose (A), yeast extract (B), 
and pH (E) have significant effects on kojic acid produc-
tion, while  KH2PO4(C), and  MgSO4.7H2O (D) were non-
significant. The interaction between different variables 
AB (glucose * yeast extract), AC (glucose *  KH2PO4), 

BC (yeast extract *  KH2PO4), and BD (yeast extract * 
 MgSO4.7H2O) were significant for KA production. The 
response surface and the interaction plots were drawn 
in 3D visualization to clear the interaction between two 
factors in the constant of the other (Fig.  2). Derringer’s 
desirability function was used to calculate an optimal 
variable concentration for high KA production. The 
resulting optimum levels of glucose 150, g/l; yeast extract 

Fig. 1 Actual (laboratory) and predicted (calculated) values of kojic acid production by A. flavus ASU45 (OL314748)
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Fig. 2 Box–Behnken statistical design 3D surface plots clearing the interactions between of AB (glucose * yeast extract), AC (glucose *  KH2PO4), BC 
(yeast extract *  KH2PO4), and BD (yeast extract *  MgSO4.7H2O) on kojic acid (g/l) production by A. flavus ASU45 (OL314748)
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5 g/l;  KH2PO4 1 g/l;  MgSO4.7H2O 2 g/l, and pH 3, were 
found to be the best levels after using the function, giving 
desirability of 1.000 as cleared in Fig. 3.

Characterization of kojic acid
Kojic acid crystals were analyzed using FTIR, XRD, and 
a scanning electron microscope. FTIR spectrum of KA 

Fig. 3 The statistical desirability ramp plot of kojic acid production by A. flavus ASU45 (OL314748)
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showed functional groups peak values similar to the stand-
ard KA sample. The functional group bands appear at 
3176.55 cm-1 (for -OH), 2924.45, 2853.74 cm-1 (for aliphatic-
CH), 1659.82 cm-1 (for cyclic -C=O), 1609.71 cm-1 (for 
C=C), 1471.64 cm-1 (for -CH2), 1073.56 cm-1 (for cyclic 
C-O-C), 943.07, 863.58, 764.99 cm-1 (for 1,4α-disubstituted 
ring). The standard KA has peaks at 3269.14, 3176.59 cm-1 
(for -OH), 2924.40, 2852.55 cm-1 (for aliphatic-CH), 

1660.55 cm-1 (for cyclic -C=O), 1610.02 cm-1 (for C=C), 
1472.33 cm-1 (for -CH2), 1073.82 cm-1 (for cyclic C-O-C), 
943.43, 863.54, 775.52 cm-1 (for 1, 4 α-disubstituted ring) as 
cleared in Fig. 4.

X-ray diffractogram of the extracted kojic acid is 
recorded and displayed in Fig.  5. This analysis depends 
on the elastic scattering of the X-rays from the analyzed 
structures, results reveal the presence of diffraction lines 

Fig. 4 FTIR of standard and crystalized KA produced by A. flavus ASU45 (OL314748)

Fig. 5 XRD of crystalized KA produced by A. flavus ASU45 (OL314748)
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at 2θ = 17.6, 19.2, 21.6, 21.9, 29.0 and 39.1°, which match 
these lines of standard kojic acid identified card in JCPDS 
card No (00–007-0704) confirmed the presence of kojic 
acid. The crystal structure of KA was demonstrated using 
single crystal analysis in a previous study [48], with crys-
tal size 0.1× 0.03× 0.02 (mm), with angles a/Å 3.76 (α/°), 
b/Å 18.34(β/°), 96.833(c/Å), and θ range 3.285–30.503. The 
crystalized structure of extracted kojic acid was cleared in 
Fig. 6 a-c. Kojic acid crystals appeared as yellow needles in 

visual light (Fig. 6a), using a scanning electron microscope 
KA crystal appeared as angular needles with 2000–2500 μm 
length and 250–300 μm width cleared in Figs. 6 b-c.

Antibacterial activity of crystallized KA
The crystalized KA (cr. KA) was screened for their 
capabilities as antibacterial agents against six patho-
genic bacteria B. cereus ASU300, S. aureus ASU301, 
E. coli ASU302, K. pneumonia ASU303, S. marcescens 

Fig. 6 Crystalized KA produced by A. flavus ASU45 (OL314748) (a) under visible light, and (b & c) under scanning electron microscope

Table 1 Antibacterial activities (inhibition zone (IZ), cm ± SD) of crystalized and standard kojic acid from A. flavus ASU45 (OL314748) 
against six human pathogenic bacteria

KA kojic acid, IZ inhibition zone, SD standard deviation, Bacillus cereus ASU300, Staphylococcus aureus ASU301, Escherichia coli ASU302, Klebsiella pneumonia ASU303, 
Serratia marcescens ASU304, and Serratia plymuthica ASU305

KA μg/ml KA‑Standard KA‑Crystalized KA‑Standard KA‑Crystalized KA‑Standard KA‑Crystalized

B. cereus ASU300 (IZ, cm ± SD) S. aureus ASU301 (IZ, cm ± SD) E. coli ASU302 (IZ, cm ± SD)

100 2.4 ± 0.1 2.75 ± 0.05 2.2 ± 0.0 2.25 ± 0.05 2.15 ± 0.05 2.35 ± 0.05

75 2.2 ± 0.0 2.55 ± 0.05 2 ± 0.1 2 ± 0.0 2 ± 0.0 2.1 ± 0.1

50 2.05 ± 0.05 2.45 ± 0.05 1.9 ± 0.0 1.95 ± 0.05 1.85 ± 0.05 1.95 ± 0.05

25 1.8 ± 0.1 2.15 ± 0.15 1.75 ± 0.05 1.85 ± 0.05 1.7 ± 0.0 1.6 ± 0.0

KA μg/ml K. pneumonia ASU303 (IZ, cm ± SD) S. marcescens ASU304 (IZ, cm ± SD) S. plymuthica ASU305 (IZ, cm ± SD)
100 2.55 ± 0.05 2.85 ± 0.1 2.2 ± 0.1 2.3 ± 0.1 2 ± 0.1 2.85 ± 0.05

75 2.35 ± 0.05 2.75 ± 0.05 2.1 ± 0.0 2.1 ± 0.0 1.85 ± 0.05 2.2 ± 0.1

50 2.3 ± 0.0 2.4 ± 0.1 1.95 ± 0.05 1.95 ± 0.05 1.7 ± 0.0 1.8 ± 0.0

25 2.15 ± 0.05 2.35 ± 0.05 1.7 ± 0.0 1.75 ± 0.05 1.55 ± 0.05 1.65 ± 0.05
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ASU304, and S. plymuthica ASU305 compared with 
standard KA (st. KA). It was clear that crystalized KA 
produced by A. flavus ASU45 (OL314748) was more 
effective than standard KA (chemically synthesized) 
against Gram +ve and -ve bacteria and its efficiency 
increased by increasing the concentration until 100 μg/
ml, the most effective concentration (Table  1). Bacil-
lus cereus, K. pneumonia, and S. plymuthica were the 
highest affected isolates at 100 μg/ml KA by 2.75 ± 0.05 
(2.4 ± 0.1 st. KA), 2.85 ± 0.1 (2.55 ± 0.05 st. KA) and 
2.85 ± 0.05 (2 ± 0.1 st. KA) inhibition zones cm ± SD, 
respectively. However, E. coli, S. marcescens, and S. 
aureus were inhibited by 2.35 ± 0.05 (2.15 ± 0.05 st. KA), 
2.3 ± 0.1 (2.2 ± 0.1 st. KA) and 2.25 ± 0.05 (2.2 ± 0.0 st. 
KA) inhibition zones cm ± SD, respectively. For ethyl 
acetate (negative control), gave growth inhibition 1.4, 
1.6, 1.5, 1.7, 1.5, 1.6 cm for B. cereus ASU300, S. aureus 
ASU301, E. coli ASU302, K. pneumonia ASU303, S 
marcescens ASU304, and S. plymuthica ASU305. Chlo-
ramphenicol was utilized as a positive control with 
100 μg/ml concentration. Although chlorampheni-
col inhibited the bacterial growth, kojic acid gives 
higher antibacterial activities compared with chloram-
phenicol in 100 μg/ml concentration giving B. cereus 
ASU300 (1 ± 0.0 cm), S. aureus ASU301 (1 ± 0.0 cm), 

E. coli ASU302 (1.4 ± 0.1 cm), K. pneumonia ASU303 
(1.1 ± 0.05), S. marcescens ASU304 (1.8 ± 0.1 cm), and S. 
plymuthica ASU305 (1.6 ± 0.05 cm).

Anticancer activity of crystallized KA
Cell viability by MTT assay
The toxicity of crystalized and standard KA toward dif-
ferent three cancer cell lines (HepG2, Mcf7, and Huh7) 
was examined after incubation for 24 h using 0, 25, 50, 
and 100 μg/ml KA concentrations. Cell viability was 
examined via MTT assays (Fig. 7a&b). The reduction of 
cell viability was dose-dependent. Among the examined 
cell lines, the most affected one was HepG2 followed by 
Mcf7 and Huh7. The  IC50 of both crystalized and stand-
ard kojic acid was determined for 24 h on HepG2 cells 
(Fig.  7c), it was 55.1 ± 3.3 and 38.9 ± 6.2 μg/ml, respec-
tively. These results are all in line with each other’s 
(Fig. 7a&b).

Acridine Orange/ethidium bromide staining assay
The HepG2 cell death (the most affected cell line) 
was also examined morphologically by AO/EB dou-
ble staining, to clear the percentage of apoptotic cells 
(pre- and late stages) with orange to red nuclei and with 
different degrees of chromatin damage increased in a 

Fig. 7 The effect of crystalized and standard Kojic acid on cell viability of different cell lines by MTT assay. Cells were treated with 0, 25, 50 
and 100 μg/ml KA concentrations for 24 h and then cell viability was determined by MTT assay for both crystalized (a) and standard (b) kojic acid. 
 IC50 of both forms of kojic acid was determined for 24 h (c). All data are means (n = 3) of independent experiments ± SD (* p < 0.05)
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dose-dependent manner for both crystalized and stand-
ard kojic acid (Fig. 8). The presence of necrotic cells was 
not evident across kojic acid concentrations. Clearly, 
effects of both crystalized and standard kojic acid on cell 
death were observed (Fig. 8).

Scratch assay
In another experiment, we used a scratch healing assay 
to test wound closure rate as an indication of cell growth. 
HepG2 cells were transacted or not with crystalized and 
standard kojic acid 50 μg/ml for 24 h, then the width of 
the scratch was determined at 0 and 24 h of incubation. 
The untreated cells have the smallest wound closure 
width (mm) compared to other treatments (Fig.  9a&b) 
which reflected the high inflammation rate of HepG2, 
while both crystalized and standard kojic acid had high 
wound closure width after 24 h incubation compared to 
the zero-hour incubation which clearing the anti-inflam-
mation activities of the treatment. These results included 
that kojic acid is effective in cell growth amelioration.

Molecular docking of KA as antibacterial and anticancer 
agent
As tyrosinase inhibitor
The co-crystalized ligand B5N binding mode exhib-
ited − 6.56 kcal/ mol binding energy against the crys-
tal structure of tyrosinase. Which binding with Arg209 

by 1 H bond with 1.81 Å distance, moreover formed six 
Pi-amide, Pi-Alkyl, and Pi-Pi interactions with His208, 
Phe197, Gly200, Pro201, Val218, and Ala221. However, 
the Fluro group interacted with cupper 303 by metal 
interaction, His60, and His208 by halogen interaction 
(Fig. 10). The best pose of Kojic acid exhibited − 6.98 kcal/ 
mol binding energy against the crystal structure of tyrosi-
nase. It’s binding with Gly216, His60 and Asn205 by 3 H 
bonds with 2.03, 2.56, and 2.51 Å distance, respectively, 
additionally interacted with cupper 303 by metal interac-
tion (Fig. 11 & Table 2).

As nuclear factor kappa B (NFKb) inhibitor
The binding mode of a co-crystalized ligand (benzox-
epine) exhibited a binding energy of − 5.71 kcal/ mol 
against the Crystal Structure of  NFKb. Which interacted 
with Leu474 and Glu472 by two hydrogen bonds with a 
distance of 2.50 and 1.87 Å, moreover, it’s formed 12 Pi-
Alkyl, Pi-sigma, and Pi-sulfur interactions with Val416, 
Leu524, Arg410, Met471, Cys535, and Lys431 (Fig.  12). 
The best pose of KA exhibited a binding energy of 
− 5.49 kcal/ mol against the Crystal Structure of  NFKb. 
It interacts with Asp521, Cys535, and Ser412 by three 
hydrogen bonds with a distance of 2.13, 2.51 and 2.71 Å 
respectively, and additionally interacted with Val416 and 
Cys535 by Pi-Alkyl interaction (Fig. 13).

Discussion
Kojic acid represents a secondary biological metabo-
lite produced mostly by Aspergillus spp. In the first part 
of the study, we enhanced KA production by A. flavus 
ASU45 (non-aflatoxin producer) from 39.96 to 81.59 g/l 
KA using Box-Behnken statistical design in modified 
Czapek’s glucose broth medium. Several researchers 
demonstrated the ability of fungi for KA production; 
Machida et  al. [58] revealed that Aspergillus oryzae 
and A. flavus were the main producers of kojic acid. 
Mahmoud and Zohri [17] reported that KA produced by 
different isolates of A. flavus and A. oryzae from Egyp-
tian sources were between 0.091 and 66.18 g/l on a glu-
cose medium. It was found that A. oryzae could produce 
24 to 41 g/l KA in a glucose medium [15, 59], however, 
Yan et al. [53] obtained 33.1 g/l KA from A. oryzae M866 
in a corn stalk medium. Also, it was found that A. flavus 
could produce 24 to 47 g/l KA using glucose as a carbon 
source [12, 13, 52, 60–64].

Statistical experimental designs were recently pre-
ferred in the optimization process over the traditional 
way (one factor at a time) for saving time, costs, minimiz-
ing the experimental errors, and showing the interaction 
between the tested parameters [17]. After optimizing 
KA production by A. flavus ASU45 (OL314748) using 

Fig. 8 Examination of cancer cell death caused by kojic acid using 
AO/EB double staining HepG2 cell line transact with 0, 50, 100 μg/ml 
of crystalized and standard kojic acid for 24 h.Viable cells show bright 
green nuclei and intact structure; apoptotic cells clear orange nuclei 
and condensed chromatin; and the necrotic cells display orange 
nuclei and intact structure
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Box-Behnken statistical design, kojic acid produc-
tion values increased to 81.59 g/l (with predicted value 
79.24 g/l) using glucose 150, yeast extract 5,  KH2PO4 1, 
 MgSO4.7H2O 2 g/l and pH 3. In agreement with our find-
ings; after the optimization process of KA from A. flavus 
the researcher reached varied quantities; Zohri et al. [12] 
obtained 24.65 g/l KA, Sanjotha et al., [13] obtained 31 g/l 
KA, Rosfarizan and Ariff [64] obtained 39.9 g/l KA, Devi 
et al. [63] obtained 47 g/l KA, El-Kady et al. [11] obtained 
53.5 g/l KA, and Devi et al. [65] obtained 82.6 g/l of kojic 
acid. In our study, the kojic acid was extracted and crys-
talized using ethyl acetate (1:1, filtrate: solvent). Previous 
researchers reported ethyl acetate is the best extraction 
solvent for kojic acid and the equal ratio is the effective 
extraction solution [62, 66]. Crystallized KA was char-
acterized using FTIR and XRD showing high agreement 
with previously reported results by Devi et al. [67].

In the second part, we compare the antibacterial activi-
ties of crystalized (from Aspergillus flavus ASU45) and 

standard (chemically synthesized) in the presence of 
chloramphenicol as positive control. Crystalized KA was 
an effective antibacterial agent against all the six patho-
genic bacteria; B. cereus ASU300, S. aureus ASU301, 
E. coli ASU302, K. pneumonia ASU303, S. marces-
cens ASU304, and S. plymuthica ASU305. However, B. 
cereus, K. pneumonia, and S. plymuthica were the high-
est inhibited isolates. In agreement with our finding; KA 
was recorded as an antimicrobial agent to both Gram-
ve and + ve bacteria [68] with dilutions from 1:1000 to 
1:2000 [38]. Bacillus sp., E. coli and S. aureus were con-
trolled effectively by KA [3, 41], and the concentrations 
about or higher than 100 ppm were the effective ones 
[69, 70]. It was demonstrated that 100 μg/ml KA was an 
effective antibacterial concentration against Escheri-
chia coli, Klebsiella pneumoniae, Staphylococcus aureus, 
Pseudomonas oleovorans and Staphylococcus epidermidis 
which was in agreement with our findings [71–73]. Kojic 
acid also demonstrated efficient antibacterial activity to 

Fig. 9 The ability of kojic acid treatment on cancer cell growth by scratch healing assay (HepG2) was plated for 24 h and then a scratch was carried 
out as described in methods section. Then cells treated with 0 and 50 μg/ml of crystalized and standard kojic acid for 24 h, the width of the scratch 
was determined at 0 and 24 h. of incubation. Representative images of wound closure of different treatments (a). Calculations of wound closure 
width after 0 and 24 h of different treatments (b). All data are means (n = 3) of independent experiments ± SD at p < 0.05
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Acinetobacter baumannii with MIC 128 μg/ml [74], Mic-
rococcus luteus with 0.125 mg/ml [75], Bacillus sphericus 
with 200 μg/ml [71], Bacillus subtilis with 131.12 μM [72], 
200 μg/ml [71], and Streptococcus pyogenes with 64 μg/

ml [76]. Compared with common synthetic antibacterial 
agents kojic acid reveals more efficiency than chloram-
phenicol, it was demonstrated that chloramphenicol MIC 
> 256 μg/mL for Escherichia coli, Providencia stuartii, 

Fig. 10 Co‑crystalized ligand (B5N) docked in the Crystal Structure of tyrosinase, are in green color and the pi interactions are in purple lines 
with mapping surface clearing the co‑crystalized ligand in the active pocket of tyrosinase crystal structure

Fig. 11 3D kojic acid docked in crystal structure of tyrosinase, hydrogen (H) bonds are in green color and the pi interactions are in purple lines (A), 
mapping surface clearing kojic acid occupying through the active pocket of tyrosinase crystal structure (B)
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Enterobacter cloacae, and Pseudomonas aeruginosa [77] 
128 μg/mL for Enterobacter aerogenes, and Klebsiella 
pneumoniae [78].

Kojic acid was found to exert its antibacterial activity 
near the cell surface; however, it was believed that the 
antibacterial action of kojic acid was related to metal 
ions chelation [79]. According to Wu [80] kojic acid 
-CH2OH group at position 2 is utilized as a binding site 
for attaching to bacterial surface then KA induces mem-
brane perforation in bacteria leading to cytoplasmatic 
leakage, functions and bacterial cell death. Tyrosinase 
inhibitors like KA could be promising antimicrobials for 
enhancing the activity of the incumbent drugs. Recently, 

tyrosinase inhibition involved as an antibacterial mecha-
nism depending on the cell membrane disruption [81]. 
Scientists observed strong antibacterial activity with 
strong tyrosinase inhibition, the antibacterial mechanism 
of tyrosinase inhibitors generated from the reduction of 
cellular membranes fluidity, which interferes with the 
bacterial function [82–84]. In our research, we illustrated 
the antibacterial mechanism of KA using the molecular 
docking technique as a tyrosinase inhibitor. The molecu-
lar docking process illustrates the molecule’s behavior 
through the binding sites of the target proteins via simu-
lating the interaction process between the molecule and 
the protein through atomic levels [85]. Prediction of the 

Table 2 Tested compounds DG (kcal/mol) against the tyrosinase crystal structure and  NFKb crystal structure via target sites PDB (ID: 
6EI4) and (ID:5T8P), respectively

Ligand RMSD value (Å) Docking score (kcal/mol) Interactions
H.B Pi‑interactions

Tyrosinase crystal structure
Crystal ligand (B5N) 1.22 −6.56 1 6

Kojic acid 1.12 −6.98 3 0

NFKb crystal structure
Crystal ligand (benzoxepine) 0.66 −5.71 2 12

Kojic acid 0.89 −5.49 3 2

Fig. 12 Co‑crystalized ligand (benzoxepine) docked in the Crystal Structure of  NFKb, hydrogen (H) bonds are in green color and the pi interactions 
are in purple lines with mapping surface clearing the co‑crystalized ligand in the active pocket of  NFKb crystal structure
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ligand, location, orientation via these sites (referred as 
pose) and the evaluation of their binding affinity repre-
sents two fundamental processes through the docking 
process [86]. Essentially, the purpose of molecular dock-
ing is to use computational techniques to anticipate the 
structure of the ligand-receptor complex [87].

Both forms of kojic acid (standard and crystalized KA) 
were tested for the anticancer activities against three 
types of cancer cell lines; mammary carcinoma (Mcf-
7), and hepatocellular carcinoma (HepG2, and Huh7). 
Both forms of kojic acid demonstrated anti-proliferative 
effect on the studied cell lines as tested by MTT assay. 

More detailed studies were done on HepG2 cell line, as 
acridine Orange/ ethidium bromide double staining for 
detection of cell death type and wound healing assay 
for investigation of cell growth. Reactive Oxygen Spe-
cies (ROS) represent the primary source of diseases as 
cancer, Parkinson’s, Alzheimer’s, and many others [88]. 
Kojic acid has anti-oxidative abilities that neutralize ROS 
and accordingly protect against the development of such 
diseases [89]. It has been shown that KA has a potential 
antioxidant activity with a very close  IC50 of ascorbic 
acid [42]. Accordingly, KA represents an effective non-
toxic biological metabolite, that could neutralize the 

Fig. 13 3D kojic acid docked in crystal structure of  NFKb, hydrogen (H) bonds in green color and the pi interactions are in purple lines (A), mapping 
surface clearing kojic acid occupying through the active pocket of  NFKb crystal structure (B)
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effects of ROS are produced through the chemotherapy 
strategies of neoplastic diseases [90]. In our study, kojic 
acid showed cytotoxic effects on the HepG-2 cells which 
suggest their strong antitumor potentiality against hepa-
tocellular carcinoma. These results were in agreement 
with a previous study on chemically synthesized KA, 
which documented the combination therapy of Mannich 
base containing ciprofloxacin and Kojic acid in treating 
HepG-2 [43]. In our research, we illustrated the antican-
cer mechanism of KA using the molecular docking tech-
nique as a nuclear factor kappa B  (NFKb) inhibitor.  NFKb 
represents the main transcription factors regulating the 
genes responsible for the inflammatory responses stimu-
lating the immunoglobulin κ light chain expression in B 
cells [91]. Kojic acid was reported as a potential inhibi-
tor of cellular NF- kappa B, HaCaT cells, SCC-13, and 
human keratinocytes [92].

kojic acid was found not toxic in reproductive, chronic, 
genotoxicity, and acute studies due to its slowly releas-
ing properties throughout the human skin [93, 94]. The 
toxicity of kojic acid is connected basically with the con-
centration [93]. The concentrations utilized during the 
antibacterial and anticancer treatments didn’t exceed 
100 μg/ml which was important to select the conveni-
ent concentrations for future applications. Although the 
effective biological properties of KA, its concentrations 
in human treatments were recommended to not exceed 
1% for safety use [95], not exceed 4% for skin care and 
cosmetics [2], and not exceed 2% for face and neck (leave-
on products) [96] which is much higher than the concen-
trations we used (the highest concentration was 0.01%).

Future prospective
Kojic acid has various applications in several fields as anti-
microbial, anticancer, tyrosinase inhibitor, insecticide and 
pesticide organic compounds. Applications of kojic acid in 
several fields as well as its market value are increasing fre-
quently. Researchers and producers of kojic acid hope to 
search for new KA-producing microorganisms that have 
the natural adaptability on the way to industrial process 
conditions and to consume low-cost substrates for their 
growth that are positioned within technological advances. 
The preparation of natural kojic acid derivatives are prom-
ising and advantageous to apply in human or veterinary 
medicines and needs to include with preferable properties 
during future studies as a natural solution to drug resist-
ance pathogens and even in cancer treatments.

Conclusions
It concluded that statistical designs are effective and 
time-saving tools to optimize the production pro-
cess and clear the interaction manner between tested 

parameters. Kojic acid was increased with double pro-
duction using Box-Behnken statistical design with 41 
runs and 98.45% efficiency. Fourier-transform infrared 
spectroscopy, X-ray diffraction, and scanning electron 
microscope are used for crystalized kojic acid analy-
sis. Crystalized kojic acid has effective antibacterial 
activities against six human pathogenic bacteria B. 
cereus ASU 300, S. aureus ASU 301, E. coli ASU302, 
K. pneumonia ASU 303, S. marcescens ASU 304, and S. 
plymuthica ASU 305. Also, it has anticancer activities 
against Mcf-7, HepG2 and Huh7 cancer cell lines and 
showed high cytotoxic effects on HepG-2 cells which 
suggests its strong antitumor against hepatocellular 
carcinoma. The biological mechanisms of kojic acid as 
an antibacterial and anticancer agent were illustrated 
using the molecular docking technique.
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